Provident sets and rudimentary set forcing
نویسنده
چکیده
Using the theory of rudimentary recursion and provident sets developed in a previous paper, we give a treatment of set forcing appropriate for working over models of a theory PROVI which may plausibly claim to be the weakest set theory supporting a smooth theory of set forcing, and of which the minimal model is Jensen’s Jω. Much of the development is rudimentary or at worst given by rudimentary recursions with parameter the notion of forcing under consideration. Our development eschews the power set axiom. We show that the forcing relation for ∆̇0 wffs is propagated through our hierarchies by a rudimentary function, and we show that the construction of names for the values of rudimentary and rudimentarily recursive functions is similarly propagated. Our main result is that a set-generic extension of a provident set is provident.
منابع مشابه
Rudimentary recursion and provident sets
This paper, a contribution to “micro set theory”, is the study promised by the first author in [M4], but improved and extended by work of the second. We use the rudimentarily recursive (set theoretic) functions and the slightly larger collection of gentle functions to develop the theory of provident sets, which are transitive models of PROVI, a very weak subsystem of KP which nevertheless suppo...
متن کاملRudimentary recursion, provident sets and forcing
and call a set A provident if it is transitive and closed under all p-rud-rec functions with p a member of A. * If ζ is the least ordinal not in a provident set A, then ζ is indecomposable, that is, that the sum of two ordinals less than ζ is less than ζ. Conversely, if ζ is indecomposable, η > ζ and p ∈ Jζ , then the Jensen set Jη is is closed under all p-rud rec functions; in particular Jζ is...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کامل